微专题18 函数的应用(解析版).docx

上传人:王** 文档编号:1332020 上传时间:2024-06-19 格式:DOCX 页数:33 大小:200.99KB
下载 相关 举报
微专题18 函数的应用(解析版).docx_第1页
第1页 / 共33页
微专题18 函数的应用(解析版).docx_第2页
第2页 / 共33页
微专题18 函数的应用(解析版).docx_第3页
第3页 / 共33页
微专题18 函数的应用(解析版).docx_第4页
第4页 / 共33页
微专题18 函数的应用(解析版).docx_第5页
第5页 / 共33页
微专题18 函数的应用(解析版).docx_第6页
第6页 / 共33页
微专题18 函数的应用(解析版).docx_第7页
第7页 / 共33页
微专题18 函数的应用(解析版).docx_第8页
第8页 / 共33页
微专题18 函数的应用(解析版).docx_第9页
第9页 / 共33页
微专题18 函数的应用(解析版).docx_第10页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《微专题18 函数的应用(解析版).docx》由会员分享,可在线阅读,更多相关《微专题18 函数的应用(解析版).docx(33页珍藏版)》请在优知文库上搜索。

1、微专题18函数的应用【方法技巧与总结】知识点一、几种常见的函数模型1一次函数模型:y=kx+b(k,b为常数,4WO)2、二次函数模型:y=a2+bx+c(4,b,c为常数,0)3、指数函数模型:yba+c(4,b,c为常,数,。工0,。0且。工1)4、对数函数模型:y=/JilogrtX+n(?,为常数,m0,a0且l)5、哥函数模型:y=ax+b为常数,工0)6、分段函数模型:y=v+了214163664%O122.5853则反映y,%,y3随X变化情况拟合较好的一组函数模型是()A.yi=x2,%=2*,y3=Iog2xB.=2x,y2=x2fy3=Iog2xC.y=Iog2x,y2=x

2、2fy3=2xD.y=2,y2=Iog2x,y3x2【答案】B【解析】从题表可以看出,三个变量%,%,必都随X的增大而增大,但是增长速度不同,其中变量凶的增长呈指数函数型变化,变量力的增长呈辕函数型变化,变量力的增长呈对数函数型变化.此外,也可以使用第五组数据代入检验得到答案.故选:B.例3.下列函数中,当X很大时,y随X的增大而增大速度最快的是()A.y=-exB.y=1001nxC.y=100xD.y=1002jf【答案】A【解析】由题意,当“很大时,指数函数增长速度大于一次函数的增长速度,一次函数的增长速度大于对数函数的增K速度,又e2,所以当X很大时,)随汇的增大而增大速度最快的是y二

3、+e故选:A变式1.下面对函数*)=g/,go)=(;)与心)=/在区间(。,田)上的衰减情况的叙述正确的是A. /(x)的衰减速度逐渐变慢,g(x)的衰减速度逐渐变快,MX)的衰减速度逐渐变慢B. /(x)的衰减速度逐渐变快,g(x)的衰减速度逐渐变慢,Mx)的衰减速度逐渐变快C. /(x)的衰减速度逐渐变慢,g(x)的衰减速度逐渐变慢,MX)的衰减速度逐渐变慢D. /(x)的衰减速度逐渐变快,g(x)的衰减速度逐渐变快,MX)的衰减速度逐渐变快【答案】C【解析】由函数)=g;,g()=(;)与心)=;3在区间(o,y)上的图象以及性质知函数/(X),g(x),MX)的衰减速度均逐渐变慢,故

4、选:CX-2-10123y0.240.5112.023.988.02则X,y的函数关系与下列各类函数最接近的是(其中*b为待定系数)()A.y=a+bxB.y=bxC.y=ax2+bD.y=-X【答案】B【解析】根据题表中的数据描点如图所示.yo对应数据显示该函数是增函数,且增幅越来越快,JA不成立;C是偶函数,x=l的函数值应该相等,,C不成立;*/X=OUt,2无意义,.d不成立;X对B,当x=0时,y=l,当x=l时,y=b=2O2,经验证它与各数据比较接近.故选:B.题型二:二次函数模型例4.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离在某种

5、路面上某种型号汽车的刹车距离s(m)与汽车的车速Mkmzh)满足下列关系:S=+急65.8(为常数,且N),做了两次刹车试验,有关试验数据如图所示,其中仁,145217S一二S210SO4070求的值;6+485749F14+17IO4(2)要使刹车距离不超过12.6m,则行驶的最大速度是多少?2In4965.8【解析】(1)观察图象知,*=?+4,多=+:,而My510414s217c9550,因此0vu60,即v=60,所以行驶的最大速度是60k11Vh例5.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,已知总收40()X-r20X400(1)将利润/

6、()(单位:元)表示为产量X的函数(利润=总收益一总成本);(2)当产量X为多少时,公司所获利润最大?最大利润是多少?【解析】(1)依题意,总成本为20000+100x,当0400时,/(x)=400x-x2-I00x-20000=-x2+300x-20000,当X400时,/(x)=8(XXX)-100x-2(XXX)=600Oo-100X,八一/+300x-20000,0400-综上所述2,其中xN:60000-100x,%400(2)当0x400时,/(x)=-1X2+300x-20000=-(x-300)225000,当x=300时,/(x)m=25000;当x400时,f(x)=60

7、0700X是单调递减函数,.(x)=60000-100x(400)=20000平方米.(1)求y与X的函数关系式及X的取值范围;(2)当AB多长时,游乐场的面积为320平方米?【解析】(1)SaE=TX2,因为48长为X米,所以DE=CK=X米,因为篱笆总长为54米,三处各留2米宽的大门,所以应:=54-工-2(工-2)+2=54-3工+4+2=(60-3力米,fxO由ZW氏为27米,墙ON足够长,可知kS解得:llxv20,060-327所以长方形ADEB的面积为BEAB=(60-3x)x=-3+60x,所以y=,2-3f+60x=-22+50,11X0,解得x2,xN*,.3,.3x5,x

8、N,当%5时,y=60-2(x-5)x-120=-2x2+70x-120,令-2f+70x-1200,其整数解为:2x33,eN,所以5vx33,XGN,所以60.I20,3x5,xeN-2x2+70x-120,5x33,xN*(2)对于y=60x-120,3x5,xwN*,显然当x=5时,ymax=I8O7,对于y=-2x2+70x-120,5180,考每辆电动观光车的日租金定在17或18元时,才能使日的净收入最多.题型三:分段函数模型例7.第二十二届世界杯足球赛将于2022年11月20日至12月18日在卡塔尔举行,这是世界杯足球赛首次在中东国家举行.本届世界杯很可能是“绝代双骄”梅西、。罗

9、的绝唱,狂傲的青春也将被时间揽入温柔的怀抱.即将说再见时,才发现,那属于一代人的绝世风华,不会随年华逝去,只会在年华的飘零中不经意的想起.世界杯,是球员们圆梦的舞台,是球迷们情怀的归宿,也是商人们角逐的竞技场.某足球运动装备生产企业,2022年的固定成本为100o万元,每生产X千件装备,需另投入资金R(X)(万元).经计算与市场X2+0v,0x80评估得Ra)=3052一27504+10000,调查发现,当生产10千件装备时需另投入的资金,x80XR(Io)=2100万元.每千件装备的市场售价为300万元,从市场调查来看,2022年最多能售出150千件.(1)写出2022年利润W(万元)关于年产量X(千件)的函数;(利润=销售总额-总成本)(2)求当2022年产量为多少千件时,该企业所获得的利润最大?最大利润是多少?【解析】(I)由题意知,当X=IO时,R(IO)=IO2+1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 中学学案

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!