《一文轻松读懂边缘计算.docx》由会员分享,可在线阅读,更多相关《一文轻松读懂边缘计算.docx(10页珍藏版)》请在优知文库上搜索。
1、大概很多人都有这样的经历:不小心,手被火烧或被开水烫了,人会立即移开自己的手,这个反应是人的自组织条件反射反应。我们假设一下,如果我们的手被火烧或被开水烫由我们大脑根据汇集的信息做反应决定,再采取行动的话,那会是一个什么样的场景?假设我们把人的条件反射标记为边缘计算,把人的大脑的反应标记为云计算的话,那么我们就可以浅显而又深刻地了解边缘计算和云计算的区别。什么是边缘计算边缘计算(EdgeCOmPUting)是相对云计算而言的,它是指收集并分析数据的行为发生在靠近数据生成的本地设备和网络中,而不是必须将数据传输到计算资源集中化的云端进行处理。边缘计算又被叫做分布式云计算、雾计算或第四代数据中心。
2、边缘计算首先通过在WAN网络上虚拟化网络服务而出现。最初是由一个平台来驱动的,适应了云计算用户的习惯,这也便是思科(CiSco)于2011年曾提出的雾计算概念的由来。随着新的边缘计算能力的出现,边缘计算不再需要构建集中的数据中心,创建了具有潜在数千个可应用的大规模分布式节点的能力。为什么需要边缘计算Gartner预计到2020年全世界有多达250亿的智能设备会连接互联网,如此多的设备会产生50万亿GB的数据,这相当2015年全球数据量的5倍多。如果将这些设备产生的数据全部传输到云端,对网络带宽、网络流量成本控制、云端存储能力都是一个巨大的挑战。同时,一些应用需要及时响应,如工厂的机械设备的故障
3、预测,时延即意味着损失。另外一些边缘设备还涉及个人隐私和安全。为了应对物联网场景中海量数据传输、存储和云计算能力的挑战,领先的云计算厂商纷纷推出边缘计算的产品。将部分数据分析功能,放到了应用场景的附近(终端或网关)来实现,这种就近提供的智能服务可以满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全叮陛私保护等方面的关键需求。设备接入摆供设备接入工U.持各厂幽1供的各裨协议及蛾据格式的设笛落接为标濮统一的设备横型就近计算一定资源要求下的计Ir在边缘隶近计算.三股机情况下计算不终止设备f(fIT交通用%楼宇家JS夕(三)设备连接由数计胃流式计本地Ifi存通过通用恒接框架安全,快速的将设备
4、连接理;绿核心IX件,您可以在本地实时处理设笛数据,设备之冏的数Ig转发和营存,并通过边缘核心灰件播接至云端,打通云5雌力边缘计算节点(1.inkEdge载体)服务打通打通或下沉云造的阖R务边缘计算的由来边缘计算是近几年才兴起的一个概念,它的出现是源于云计算在实际运用中的不足:事例1:制造业打造智能工厂时,会有大量的智能化终端和设备通过工业网络接入,企业需要计算和处理的口常业务数据越来越庞大。同时,工业上有大量需要实时处理的场景,需要在毫秒级别进行实时响应。由于网络的限制,云计算架构难以实现实时响应。(延时即事故)事例2:无人汽车需要在高速移动状态对周围环境做出反应,所以晌应时间是个极其重要的
5、指标。假设汽车行驶速度为65英里每小时,紧急制动响应时间即便只慢了几毫秒,汽车紧急制动距离就会多出几英尺,这或许就是发生事故和没有发生事故的区别。(延时即生命)事例3:通过大量传感器,对油田生产数据实现自动化采集,但如果每个传感器都向云端发送联接,海量的数据给网络带来巨大压力。(海量即拥堵)事例4:假如你家的空调是智能化控制的,而且依托于云计算。但你家没有停电,却断网了,那怎么办?无法进行云端控制,尽管你汗如雨下,空调也是摆设,这岂不是是十分尴尬?边缘计算解决了这没有网络情况下的控制。(无网无服务)1、云计算和边缘计算的区别项目云计算边缘计算计算方式不同臬中式计算分布式计算地点不同远离靠近应用
6、场景设备或网美功能不同所有的数据分析和控IM逻辑功能校舆效据、执行指令和部分分析功能超时性延时任廷时曲私和安全将要高曳关注和采取播植隐私性和安全性较高数据存储存猪所有的收集的f息仅向云发送有用的处理后信息布署成本高低计算能力由性能强大的服务器组成由性能较弱、分散的各类功能计算机(霍务器)生成.是云计算的补充.人工智能云计算智能翟承云智能(精荷智能),仅实现应用场景的大部分智能2、边缘计算的几个特质份布式和低延时计算边缘计算聚焦实时、短周期数据的分析,能够更好地支撑本地业务的实时智能化处理与执行感率更高由于边缘计算距离用户更近,在边缘节点处实现了对数据的过滤和分析,因此效率更高,更加智能化Al+
7、边缘计算的组合出击让边缘计算不止于计算,更多了一份智能化更加p-能云计算和边缘计算结合,成本只有单独使用云计算的39%,缓解流量压力在进行云端传输时通过边缘节点进行一部分简单数据处理,进而能够设备响应时间,减少从设备到云端的数据流量技术进步为布署边缘计算提供了可能EPaaSSaaS和其他云服务,更多地专注于终端设备端。边缘计算的概念是因工业制造之因而起。在工业领域,云端固然必不可少,但是仍需要边缘与云端的协同工作。单点故障在工业级应用场景中是绝对不能被接受的,因此除了中心云的统一控制外,工业现场的系统也必须具备一定的活力,能够自主判断并解决问题。边缘计算可以更便捷的处理工厂设备产生的海量数据,
8、及时检测异常情况,更好的实现预测性监控,提升工厂运行效率的同时也能预防设备故障问题。除工业制造之外,边缘计算在物联网时代不断增长的数据催生了对边缘计算的需求,下图是边缘计算的典型应用场景:1、工业制造边缘计算可以更便捷的处理工厂设备产生的海量数据,及时检测异常情况,更好的实现预测性监控,提升工厂运行效率的同时也能预防设备故障问题。2、安全监控、ARVR边缘计算提供快速、高效、精准的实时响应,将驱动安防行业人工智能应用迈入全新层次。3、智能交通智能交通信号灯可以根据路上车流的情况动态的调整信号灯的颜色,提高交通流畅度,减少拥堵,还可以应用于紧急情况,例如:信号灯可以为紧急情况开辟出一条绿色通道。
9、4、自动驾驶自动驾驶在躲避障碍物的过程,若按照先上传云端、分析处理、再返回设备的模式,将造成信号传输的延迟,紧急情况下极易发生交通事故。5、智慧家居家中有非常多的智能家居的设备,智能家居不同产品之间互动场景的定义,需要边缘计算。另外,对于智慧家居来说,接入网络的安全性和私密性也为人们所看重,边缘云可以在物联网网关和数据中心之间建立加密通道,进一步提高系统的安全性和隐私性。6、智慧城市边缘计算就好比城市神经末梢,将人工智能与分布在城市中的传感器结合,可以高效处理城市运营问题,如在道路两侧路灯杆上安装传感器,收集城市路面信息,检测空气质量、光照强度、噪音水平等环境数据。7、智慧路灯嵌入到路灯内部的传感器、执行器、计算和存储单元可以组合起来构成边缘计算的节点,传感器采集的数据发送到位于网络边缘的计算和存储节点,经过计算将结果返回给执行器,执行器对路灯进行控制,而不是将数据发送到位于网络边缘的云计算中心。这样既可以提高系统的实时性,又可以减轻云端的压力。8、风力发电在风力发电机机组上布置边缘节点,实时收集数据信息。数据信息上传至工业网关,如风速、启动等做优化,将模型转化为算法或者规则,即时控制机组。9、医疗保健医疗设备上存储的数据可用于更新患者的数字医疗记录。边缘计算将连接起