河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx

上传人:王** 文档编号:1296154 上传时间:2024-06-15 格式:DOCX 页数:12 大小:19.55KB
下载 相关 举报
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第1页
第1页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第2页
第2页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第3页
第3页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第4页
第4页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第5页
第5页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第6页
第6页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第7页
第7页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第8页
第8页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第9页
第9页 / 共12页
河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx》由会员分享,可在线阅读,更多相关《河南省数字普惠金融对农业产业化影响研究——基于GMM 动态面板模型分析.docx(12页珍藏版)》请在优知文库上搜索。

1、河南徵序普惠金融对农业产业化影响5开究基于GMM动态面板牌分析O引言“强国必先强农”,2023年的中央一号文件明确举全党全社会之力全面推进乡村振兴,加快农业农村现代化,发展农业现代化必须以农业产业化为先行。在农业产业化现代化的进程中,“融资难”问题由来已久,包括龙头企业在内的各类农业产业经营主体均有一定程度的资金短缺问题。河南省作为农业大省,其农业产业化快速发展是促进农业现代化发展的根本出路。为了解决这一问题,世界各国大力推进普惠金融发展战略。近年来,随着移动互联网、大数据、云计算和人工智能的飞速发展,普惠金融已然演变为数字普惠金融。数字普惠金融的优势在于数字技术能进一步降低融资成本,触达更多

2、农村客户,利用大数据解决信息不对称和无抵押品等问题。因此,对河南省的数字普惠金融对农业产业化发展水平影响程度进行科学的测算与分析,不仅有助于突破河南省农业产业化融资难题,而且有助于为强国强农打下良好的金融基础。1相关研究综述Demirguc提出,普惠金融发展规模不断壮大,可以直接使受益人群更易获得金融支持1。Martin和CIaPP认为国家通过监管与制度法规的建立调节农业与金融之间的关系,确保农业发展获得金融支持,并推进农业商品交易与产业发展为农业吸引私人投资创造条件,对农民生活水平的提高与农业可持续性能产生重要影响2。徐强和陶侃根据对中国各个省份普惠金融数据分析发现,在中国大部分地区推广普惠

3、金融能够有效促进经济发展3。张琦等的研究结果表明,金融服务质量不高制约了“三农”发展,而供给约束是当前影响金融服务质量的主要因素4。耿君尧指出普惠金融的大力发展能够缓解农业发展中的资金不足问题5。陈银娥和汤广清认为普惠数字金融与农村特色农业产业化的耦合关系从失调阶段进入调整阶段,不同阶段的特征和增长动力不同6。韩田和荣红的研究结果表明,普惠数字金融对该地区农业企业现代化发展具有促进作用,而且普惠数字金融对该地区农业企业现代化的影响具有门槛效应。当地区经济水平达到一定程度时,普惠数字金融对农业企业现代化的影响会显著增加7。表明传统普惠金融能够促进农业产业化发展,并大多从普惠金融助力乡村振兴、支持

4、农业产业化角度,以及从宏观角度构建数字普惠金融测量体系进行研究。但是还存在以下局限:鲜有文献以省域为例。较少将数字普惠金融与农业产业化相结合。缺少农业产业化与数字普惠金融影响关系的实证研究。为此,本文利用端值法与动态面板模型系统GMM对河南省数字普惠金融与农业产业化相关数据展开回归分析,并用缩尾处理的结果与系统GMM结果做对比,以此来验证系统GMM估计的稳健性来进行实证研究,并根据实证结果及结论为数字普惠金融与农业产业化提出相应的政策建议,以期为数字普惠金融与农业产业化发展提供新的思路。2实证分析2.1 农业产业化水平的测算本文选择熠值法来计算各个指标权重,克服主观因素带来的误差,进而测算农业

5、产业化发展水平。2.1.1 选择数据选取指标数量m个,城市n个,用Xij表示第i个地区中第j个指标值。i的范围是1n,j的范围是本文选取的样本是河南省14个市,共6个指标,即m=6,n=14,Xij则表示第i个市中第j个指标的数值。2.1.2 数据预处理各指标计量单位以及方向可能会有所不同,因此必须对指标数据使用标准化处理。针对正向指标的处理措施是:同理。负向指标的处理方法如下:2.1.3 计算样本权重第j个指标下第i个市占据的比重:2.1.4 得出指标燧值第j个指标的端值是:2.1.5 计算差异系数指标的信息效用值主要是由信息烯ej与1的差值决定的,差值越大体现了该指标对综合评价水平的影响越

6、大,说明该指标所占权重也越大。2.1.6 计算评价指标权重差异系数计算出来就可以计算该指标的权重,第j项指标的权重:2.1.7 计算综合得分最终样本的综合评价值是:采用上述端值法具体步骤确定各指标的权重,进而对河南省的14个市近十年的农业产业化水平进行综合评价。2.2 GMM回归2.2.1 变量选取与数据来源(1)变量选取被解释变量农业产业化:本文从农业生产条件、农业生产效率、农业产业规模这三个角度来构造农业产业化指数,基于数据可得性选取指标,借助嫡值法测算农业产业化发展水平(表1)。一般来说,农业生产基础条件越完善,生产效率越高,产业规模越大,农业产业化水平越高。表1农业产业化指标体系核心解

7、释变量数字普惠金融:北京大学数字金融研究中心基于传统普惠金融的指标构造方法,根据数字金融发展的新特性,计算出数字普惠金融发展指数。该指数囊括多个具体指标,基于各地区的实际情况,全面准确地勾勒了各省、市、县数字普惠金融近年来的变化形势,被众多学者引用。本文也引用该指数中河南省各市近10年的数字普惠金融发展指数,用于描绘河南省的数字普惠金融发展水平。控制变量经济发展水平:本文选用的是人均GDP,衡量河南省各市的经济发展水平,将其设为控制变量。城镇化水平:城镇化水平用河南省各市城镇人口与人口的比值来度量。一方面,城镇化进程会导致农村的一些劳动力向城市转移,这将不利于农业产业发展。另一方面,城镇化有助

8、于提升农业技术水平,推动农业生产效率提高,同时城镇化增加了对农副产品的市场需求,拓展了农副产品的市场空间,倒逼农业产业规模的扩大和生产效率的提高。交通便利程度:用每个城市公路里程数与国土面积的比值来表示交通设施情况。一般交通越便利,农业机械设备、农产品等运输越畅通,越有利于农业产业发展。财政支农力度:用地方财政农林水事务支出占政府一般性支出的比重来表示,反映政府财政对农村的支持力度。政府在支农领域加大支持力度,农业产业化主体能够获取更多的资金支持。另外,政府扩张性财政政策会形成良好的示范作用,引领其他投资主体将资金运用于农业产业化领域,这向农业产业化建设传递了利好的信号。互联网普及程度:使用互

9、联网宽带用户数的对数来衡量。互联网普及程度会影响数字普惠金融的实施效果,因此会对农业产业化发展产生正向的影响。(2)数据来源与处理本文选取河南省20112020年14个市的数据开展深入分析,农业产业化相关数据来自河南发展年鉴,河南省数字普惠金融数据则引用“北京大学数字普惠金融指数”,各变量的衡量方法及数据来源如表2所示。表2变量衡量方法与数据来源对本文的变量数据进行描述性统计,结果如表3中所示。从表3中可以观察到城镇化水平、财政支持力度标准差比较小,说明这些数据在测算区间波动较小,比较平稳。测算出的农业产业化最小值是0.053,最大值是0.9983,说明各市之间的农业产业化发展水平存在较大差异

10、。表3描述性统计2.2.2 模型设定因农业产业发展每年都在持续变化,金融助力农业产业发展亦处在持续变化的进程中,在此种情况下,静态面板模型可能不太适宜,所以本文主要运用动态面板模型系统GMM对数据进行分析,检验数字普惠金融对农业产业化发展的影响,对相关变量取对数以消除异方差,并构建如下模型:式(9)主要用于检验数字普惠金融水平对农业产业化发展水平的影响,式(10)、式(11)和式(12)分别用于检验数字金融覆盖广度、数字金融使用深度和普惠金融数字化程度对农业产业化发展水平的作用效果。InZit表示城市i在第t年的农业产业化发展水平。Iniait、InCbit、InUdit和IndIit依次表示

11、城市i在第t年的数字普惠金融水平、数字金融覆盖广度、数字金融使用深度和普惠金融数字化程度。其余变量为控制变量,IngdpklnfsitInUlit、IntCit和InbUit分别表示城市i在第t年的经济发展水平、政府支农力度、城镇化水平、交通便利程度和宽带普及水平。钳为随机扰动项。动态面板的标准设定是将被解释变量的滞后期作为工具变量,并于一阶差分中估计基准模型。系统GMM的理念是通过把水平方程添加至一阶差分方程中,同时把因变量的滞后期当作水平方程的工具变量。出于确保系统GMM估计有效性的缘故,本文将使用以下两种检验方式:第一种是Sargon检验,考虑到本文所选的工具变量较多,因此选择此方法。此

12、检验方法是以选取的工具变量正确有效为原假设,使用此方法主要是为了判定所运用的工具变量是否有效,假使检验结果显示通过Sargan检验,那么所设置的工具变量就是恰当的。第二种是自相关性检验,通过观察AR(2)统计量以判定是否存在二阶自相关。2. 3研究区概况河南省作为传统的农业大省,为巩固提升农业基础地位,正在积极探索不以牺牲农业和粮食、生态和环境为代价的“三化”协调发展之路,强化以金融部门的资金支持和服务在农业产业化发展中所起的关键作用。河南省作为中部经济欠发达地区的典型代表,加速推进农业产业化进程,对河南省,乃至全国,都有重要意义。3结果分析2.1 基准回归本文首先检验数字普惠金融水平对农业产

13、业化发展水平的影响,表4列示了系统GMM的估计结果。此外,本文还给出了自相关检验的结果(表5)。表4系统GMM表5自相关检验观察检验结果发现,Sargan检验的估计结果为0.1080,稍大于0.1,因此通过了检验,而自相关检验结果中AR(2)估计大于0.1,表明无法拒绝不存在二阶自相关的原假设,故符合运用系统GMM估计方法的先决条件。综合Sargan检验和自相关检验的结果,说明运用系统GMM方法进行估计是合理的。根据表5可知,被解释变量一阶滞后项1.lnz的回归值为正且显著,表明被解释变量农业产业化发展水平在时间趋势方面呈现出动态性,一方面证实动态面板模型的设定是比较合理的;另一方面体现了河南

14、省农业产业化发展存在一定的惯性和持续性。数字普惠金融指数(Inia)的估计系数是0.0035并且在5%的显著性水平上通过了显著性检验,表明河南省数字普惠金融水平的提高能够显著促进农业产业化发展水平的提高。2.2 分维度回归为了更为细致地检验数字普惠金融对农业产业化发展水平的影响,本文进一步探究了数字普惠金融的分维度指数覆盖广度、使用深度和数字化程度对农业产业化发展水平的作用效果,仍然使用系统GMM进行检验。对数字金融覆盖广度进行回归,结果如表4所示。展示的系统GMM估计结果中,1.Jnz的估计系数表明系统GMM的估算结果是稳妥恰当的。Sargan检验和自相关检验也均符合本文核心估计方法的通过标

15、准,更进一步佐证了模型估计的有效性。从估计结果可以看出数字金融覆盖广度(InCb)的回归系数为-0.0324,系数为负,同时通过了显著性检验,说明数字普惠金融覆盖广度的扩大对农业产业化发展水平并没有一定的促进作用。表6中展示了数字金融使用深度对农业产业化水平的回归结果。Sargan检验和自相关检验的结果均表明系统GMM估计是有效的。表中数字金融使用深度(InUd)的估计系数为0.0453,并且系数非常显著,表明使用深度的增加也能够显著提升农业产业化发展水平。表6回归检验结果表7中显示的结果同样表明对普惠金融数字化程度和农业产业化水平运用系统GMM估计是有效的。表中普惠金融数字化程度(IndI)

16、的估计系数为0.0146,统计显著性略低于使用深度,但仍能够在5%的显著性水平上通过检验,体现了数字化程度的提升也能够促进农业产业化发展水平的提升。表7回归检验结果3. 3稳健性检验为验证实证结果的稳健性,本文采取以下方法展开检验,即对选取的变量数据运用缩尾处理,以排除受极端值影响的可能性。通过上述的实证分析可以得出,数字普惠金融水平对农业产业化发展水平具有正向的促进效果,而数字普惠金融各分维度指数中,数字金融使用深度和普惠金融数字化程度也与农业产业化发展水平呈现显著的正相关关系。然而,上述结论可能受到极端值的影响,故本文对所有变量数据在1%和99%的水平上采取缩尾处理的方式,通过对缩尾前后的数据重新进行估计,针对基准回归模型的稳健性估计结果见表8。根据表8列(2),稳健性检验中

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 毕业论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!