《解放ca1092货车双级主减速器驱动桥设计本科学.docx》由会员分享,可在线阅读,更多相关《解放ca1092货车双级主减速器驱动桥设计本科学.docx(29页珍藏版)》请在优知文库上搜索。
1、摘要1第1章绪论41.1 课题研究的目的和意义41.2 课题研究现状51.2.1 主减速器型式及其现状51.2.差速器形式发展现状41.2.半轴形式发展现状51.2.桥壳形式发展现状51.3设计主要内容9第2章设计方案的确定72.1 基本参数的选择72.2 主减速比的计算72.3 主减速器结构方案的确定82.4 差速器的选择82.5 半轴型式的确定92.6 桥壳型式的确定92.7 本章小结9第3章主减速器的基本参数选择与设计计算133.1 主减速齿轮计算载荷的计算133.2 主减速器齿轮参数的选择错误!未定义书签。3.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算错误!未定义书签。3.3.1
2、主减速器螺旋锥齿轮的几何尺寸计算错误!未定义书签。3.3.2 主减速器螺旋锥齿轮的强度计算错误!未定义书签。3.4 主减速器齿轮的材料及热处理错误!未定义书签。3.5 第二级斜齿圆柱齿轮基本参数的选择错误!未定义书签。3.6 第二级斜齿圆柱齿轮校核错误!未定义书签。3.7 主减速器轴承的计算193.8 主减速器的润滑223.9 本章小结错误!未定义书签。第4章差速器设计错误!未定义书签。4.1 差速器的作用错误!未定义书签。4.2 对称式圆锥行星齿轮差速器错误!未定义书签。4.2.1 差速器齿轮的基本参数选择错误!未定义书签。4.2.2 差速器齿轮的几何尺寸计算与强度计算错误!未定义书签。4.
3、4本章小结29第5章半轴设计165.1 半轴的设计与计算165.1.1 全浮式半轴的设计计算165.1.2 半轴的结构设计及材料与热处理185.2 本章小结19第6章驱动桥桥壳设计206.1 桥壳的受力分析及强度计算206.1.1 桥壳的静弯曲应力计算206.1.2 在不平路面冲击载荷作用下桥壳的强度计算216.1.3 汽车以最大牵引力行驶时的桥壳的强度计算216.1.4 汽车紧急制动时的桥壳强度计算226.1.5 汽车受最大侧向力时桥壳的强度计算246.2 本章小结26结论27参考文献28致谢29本次设计的题目是中型货车驱动桥设计。驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功
4、用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。本文首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程,及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴型式采用全浮式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、全浮式半轴、桥壳的设计工作。关键词:驱动桥;主减速器;全浮式半轴;桥壳;差
5、速器第1章绪论1.1 课题研究的目的和意义汽车驱动桥是汽车传动系统的重要组成,承载着汽车的满载荷重及地面经车轮、车架给予的垂直力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩。汽车驱动桥的结构型式和设计参数对汽车动力性、经济性、平顺性、通过性有直接影响。驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计和性能极其重要I1对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。为提高锥形齿轮副的啮合平稳性和强度,第一级减
6、速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。随着中国公路建设水平的不断提高,公路运输车辆正向大吨位、多轴化、大马力方向发展,使得重型车桥总成也向传动效率高的单级减速方向发展。但目前我国卡车中,双级减速桥的应用比例还在60%左右。如我国重卡大量使用的斯太尔驱动桥属于典型的双级减速桥,其一级减速的结构,主减速器总成相对较小,桥包尺寸减小,因此离地间隙加
7、大,通过性好,承载能力也较大,是广泛用于公路运输,以及石油、工矿、林业、野外作业和部队等多种领域的车辆网。本次的设计题目为汽车驱动桥的设计,通过本次的设计能让我们更好的认识驱动桥,了解驱动桥的结构与工作原理,更锻炼了我们的动手能力,同时也更好的掌握了查阅资料的方法,把我们大学所学的知识贯穿到了一起,是我们能够更好的运用自己所学的理论知识,让理论与实践相结合,更好的让自己掌握其中的精髓。设计与专业关系紧密,可综合利用所学的专业课有汽车构造、汽车设计、机械设计、工程材料和CAD绘图等知识。更为我们以后工作打下了良好的基础。1.2 课题研究现状1.2.1 主减速器型式及其现状主减速器的结构形式,主要
8、是根据其齿轮类型、主动齿轮和从动齿轮的安装(1)主减速器齿轮的类型在现代汽车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮如图1.2(八)所示主、从动齿轮轴线交于一点,交角都采用90度。螺旋锥齿轮的重合度大,啮合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。双曲面齿轮如图1.2(b)所示主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有:尺寸相同时,双曲面齿轮有更大的传动比。传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。(八)
9、(b)图1.2螺旋锥齿轮与双曲面齿轮当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。双曲面齿轮传动有如下缺点:长方向的纵向滑动使摩擦损失增加,降低了传动效率。齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。(2)主减速器主动锥齿轮的支承形式及安装方式的选择现在汽车主减速器主动锥齿轮的支承形式有如下两种:悬臂式悬臂式支承结构如图1
10、.3所示,其特点是在锥齿轮大端一侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度a和增加两端的距离b,以改善支承刚度,应使两轴承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转银较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。图1.3锥齿轮悬臂式支承骑马式骑马式支承结构如图1.4所示,其特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,在需要传递较大转矩情况下,最好采用骑马式支承。(3)从动锥齿轮的支承方式和安装方式的选择从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了
11、防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上。(4)主减速器的轴承预紧及齿轮啮合调整支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的l2o预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的30%。主动锥齿轮轴承预紧度的调整采用套筒与垫片,从动锥齿轮轴承预紧度的调
12、整采用调整螺母。(5)主减速器的减速形式主减速器的减速形式分为单级减速、双级减速(如图2.5)、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比i。的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比1.,7.6的各种中小型汽车上。1.2.2差速器型式发展现状根据汽车行驶运动学的要求和实际的车轮、道路以及它们之间的相互联系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使
13、汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求图1.5主减速器车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。
14、为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软
15、土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。1.2.3半轴型式发展现状驱动车轮的传动装置置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中.驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。半浮式半轴具有结构简单、质量小、尺寸紧凑、造价低廉等优点。主要用于质量较小,使用条件好,承载负荷也不大的轿车和轻型载货汽车。3/4浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮式半轴广泛应用于轻型以上的各类汽车上,本设计采用此种半轴。124桥壳型式发展现状驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此