可控核聚变科学技术前沿问题和进展.docx

上传人:王** 文档编号:1221854 上传时间:2024-06-05 格式:DOCX 页数:12 大小:87.17KB
下载 相关 举报
可控核聚变科学技术前沿问题和进展.docx_第1页
第1页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第2页
第2页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第3页
第3页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第4页
第4页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第5页
第5页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第6页
第6页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第7页
第7页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第8页
第8页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第9页
第9页 / 共12页
可控核聚变科学技术前沿问题和进展.docx_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《可控核聚变科学技术前沿问题和进展.docx》由会员分享,可在线阅读,更多相关《可控核聚变科学技术前沿问题和进展.docx(12页珍藏版)》请在优知文库上搜索。

1、一、前言可控核聚变能源是未来理想的清洁能源。在磁约束聚变领域,托卡马克研究目前处于领先地位。我国正式参加了国际热核聚变实验堆(ITER)项目的建设和研究,同时正在自主设计、研发中国聚变工程试验堆(CFETR)。在惯性约束领域,Z箍缩作为能源更具潜力,有可能发展成具有竞争力的聚变-裂变混合能源。本文重点介绍了磁约束聚变的前沿问题和我国在Z箍缩方面的研究进展。二、磁约束聚变前沿问题(一)磁约束聚变的研究意义和现状磁约束聚变是利用特殊形态的磁场把宛、宛等轻原子核和自由电子组成的处于热核反应状态的超高温等离子体约束在有限的体积内,使等离子体受控制地发生大量的原子核聚变反应,释放出能量。磁约束聚变通过低

2、密度长时间燃烧的方式实现笊、僦等离子体的自持燃烧,并将这种燃烧维持下去。世界上的磁约束聚变装置主要有托卡马克、仿星器、磁镜三种类型,其中托卡马克最容易接近聚变条件而且发展最快。目前.,磁约束聚变已经取得重大进展,我国正式参加了ITER项目的建设和研究;同时作为ITER装置与聚变示范堆(DEMO)之间的桥梁,我国正在自主设计、研发CFETR项目。这些措施将使我国的磁约束聚变研究水平位于国际前列。(二)磁约束聚变的前沿问题磁约束聚变的研究开发不仅耗资巨大,而且在科学和技术上充满了挑战,以至于在经历了40多年的较具规模的国际聚变研究之后,直到20世纪90年代才基本获得可以建造磁约束聚变实验堆的必要知

3、识和技术。磁约束聚变还处于探索阶段,存在很多物理和工程技术方面的问题需要解决。目前,国际磁约束聚变界的主要研究内容是与ITER装置相关的各类物理与技术问题。ITER装置设计总聚变功率达到5x105kW,是一个电站规模的实验反应堆。它的作用和任务是利用具有电站规模的实验堆证明笈、氟等离子体的受控点火和持续燃烧,验证聚变反应堆系统的工程可行性,综合测试聚变发电所需的高热流和核部件,实现稳态运行,从而为建造聚变能示范电站奠定坚实的科学基础和必要的技术基础。ITER计划的科学目标具体包括:集成验证先进托卡马克运行模式;验证稳态燃烧等离子体物理过程;聚变阿尔法粒子物理;燃烧等离子体控制;新参数范围内的约

4、束定标关系;加料和排灰技术。ITER装置运行第一阶段的主要目标是建设一个笊、僦燃烧能产生5105kW聚变功率、聚变增益系数Q=I0、脉冲维持大于400S的托卡马克聚变堆。在ITER装置中将产生与未来商用聚变反应堆相近的笈、瓶燃烧等离子体,供科学家和工程师研究其性质和控制方法,这是实现聚变能必经的关键一步。ITER装置运行的第二阶段将探索实现稳态高约束的高性能燃烧等离子体,聚变增益系数Q=5、脉冲维持大于3000so这种稳态高性能的先进燃烧等离子体是建造托卡马克型商用聚变堆所必需的。ITER计划在后期还将探索实现高增益的燃烧等离子体。ITER计划科学目标的实现将为商用聚变堆的建造奠定可靠的科学和

5、工程技术基础。此外,ITER计划的工程技术目标是通过创造和维持笊、氟燃烧等离子体,检验和实现各种聚变技术的集成,并进一步研究和发展能直接用于商用聚变堆的相关技术。上述工作是设计与建造商用聚变堆之前所必须的,而且只能在ITER装置上开展。ITER计划在工程技术方面部分验证的聚变堆的工程技术问题包括以下几个。(1)堆级磁体及其相关的供电与控制技术研窕;(2)稳态燃烧等离子体(产生、维持与控制)技术,即无感应电流驱动技术、堆级高功率辅助加热技术、堆级等离子体诊断技术、等离子体位形控制技术、加料与除灰技术的研究;(3)初步开展高热负荷材料试验;(4)包层技术、中子能量慢化及能量提取、中子屏蔽及环保技术

6、研窕;(5)低活化结构材料试验(TBM),氟增殖剂试验研究,氤再生、防氟渗透实验研究,氟回收及氟纯化技术研究;(6)热室技术,堆芯部件远距离控制、操作、更换及维修技术研究。ITER将集成当今国际受控磁约束核聚变研究的主要科学和技术成果,第一次在地球上实现能与未来实用聚变堆规模相比拟的受控热核聚变实验堆,解决通向聚变电站的关键问题。ITER计划的成功实施,将全面验证聚变能源开发利用的科学可行性和工程可行性,是人类受控热核聚变研究走向实用的关键一步。(三)我国磁约束聚变研究的技术目标和发展规划我国核聚变能研究开始于20世纪60年代初,尽管经历了长时间非常困难的阶段,但始终能坚持稳定、渐进的发展。从

7、20世纪70年代开始,我国集中选择了托卡马克为主要研究途径,先后建成并运行了CT-6、KT-5、HT-6B、HL-1、HT-6M托卡马克实验装置。目前.,我国的托卡马克装置主要有华中科技大学的J-TEXT装置、核工业西南物理研究院的HL-2M装置和中国科学院等离子体物理研究所的EAST装置。在以上这些托卡马克装置的设计、研制和实验过程中,组建并锻炼了一批聚变工程师队伍,中国科学家在这些托卡马克装置上开展了一系列重要研究工作。我国未来聚变发展战略应瞄准国际前沿,广泛利用国际合作,夯实我国磁约束核聚变能源开发研究的坚实基础,加速人才培养,以现有中、大型托卡马克装置为依托,开展国际核聚变前沿课题研窕

8、,建成知名的磁约束聚变等离子体实验基地,探索未来稳定、高效、安全、实用的聚变工程堆的物理和工程技术基础问题。我国磁约束聚变的近期、中期和远期技术目标如下。(1)近期目标(20152021年):建立近堆芯级稳态等离子体实验平台,吸收消化、发展与储备聚变工程实验堆关键技术,设计、预研聚变工程实验堆关键部件等;(2)中期目标(20212035年):建设、运行聚变工程实验堆,开展稳态、高效、安全聚变堆科学研究;(3)远期目标(20352050年):发展聚变电站,探索聚变商用电站的工程、安全、经济性。为了尽早地实现可控聚变核能的商业化,充分利用我国现有的托卡马克装置和资源,制定了一套完整的符合我国国情的

9、中国磁约束聚变(MCF)发展路线示意图,如图1所示。20SOm建成)(2O25ftt实验稳态先进偏注A位彩、稳态H约束等离子体实就研究Iffl: e 10. 400$. SOoMW. D-r枪燃烧等离子体实监Il即:-S, 3 000s. 3S0MW,稔态长脓冲燃燃等离子体Iffi: 1:再验证.(?- -5.检走,约200MW. IOdPa 11:示依检证,Q0, i, GW, 50dp0J-TCXT 破裂控制基域等离r体研究P卜PP 1 GWct并网; 安全可密高收HL-2M 先进儡波X、高金数加热、W.诊断署的实验研究201$ 2020 2025 2030 2035 2(Mo2045 2

10、0S0 20552060IHM年图1中国磁约束聚变发展路线图未来十年,重点在国内磁约束的两个主力装置(EAST、HL-2M)上开展高水平的实验研究。EAST装置目前基本完成了升级,研究能力和实验条件有了大幅度的提高,可以开展大量的针对未来ITER装置和下一代聚变工程堆稳态高性能等离子体研究,实现磁场稳定运行在3.5T、等离子体电流LOMA,获得400S稳定、可重复的高参数近堆芯等离子体的科学目标,成为能为ITER装置提供重要数据库的国际大规模先进试验平台。结合全超导托卡马克新的特性,探索和实现两到三种适合于稳态条件的先进托卡马克运行模式,稳态等离子体性能处于国际领先水平。在此阶段,将重点发展专

11、门的物理诊断系统,特别是对深入理解等离子体稳定性、输运、快粒子等密切相关的物理诊断。在深入理解物理机制的基础上,发展对等离子体剖面参数和不稳定性的实时控制理论和技术,探索稳态条件下的先进托卡马克运行模式和手段。实现高功率密度下的适合未来反应堆运行的等离子体放电,为实现近堆芯稳态等离子体放电奠定科学和工程技术基础。同时需对装置内部结构进行升级改造,以满足稳态高功率下高参数等离子体放电的要求。在未来几年内,HL2M装置将完成升级,具有良好的灵活性和可近性,进一步发展2025MW的总加热和电流驱动功率,着重发展高性能中性束注入(NBI)系统(810MW);增加电子回旋、低杂波的功率,新增2MW电子回

12、旋加热系统。利用独特的先进偏滤器位型,重点开展高功率条件下的边界等离子体物理,特别是探索未来示范堆高功率、高热负荷、强等离子体与材料相互作用条件下,粒子、热流、氨灰的有效排除方法和手段,与EAST装置形成互补。此外,在全面消化、吸收国际热核聚变实验堆设计及工程建设技术的基础上,以我为主开展CFETR的详细工程设计及必要的关键部件预研,并结合以往的物理设计数据库,在我国的东方超环“中国环流器2号改进型托卡马克装置上开展与CFETR装置物理相关的验证性实验,为CFETR装置(大半径R=7.2m,小半径=2.2m,中心环向磁场8t=6.5T,拉长比k=2,如图2所示)的建设奠定坚实基础。在“十三五后

13、期,2021年左右开始独立建设2xl05ii()6kw的聚变工程实验堆,在2035年前后建成CFETR装置。CFETR装置相较于目前在建的ITER装置,在科学问题上主要解决未来商用聚变示范堆必需的稳态燃烧等离子体的控制技术,氟的循环与自持,聚变能输出等ITER装置未涵盖内容;在工程技术与工艺上,重点研究聚变堆材料、聚变堆包层及聚变能发电等ITER装置上不能开展的工作;掌握并完善建设商用聚变示范堆所需的工程技术。CFETR装置的建设不但能为我国进一步独立自主地开发和利用聚变能奠定坚实的科学技术与工程基础,而且使得我国率先利用聚变能发电、实现能源的跨越式发展成为可能。图2中国聚变工程实验堆示意图三

14、、Z箍缩惯性约束聚变(一)Z箍缩聚变的研究意义与现状惯性约束聚变将某种形式的能量直接或间接地加载到聚变靶上,压缩并加热聚变燃料,在内爆运动惯性约束下实现热核点火和燃烧,基于脉冲功率技术的快Z箍缩(fastz-pinch)技术可以实现驱动器电储能到Z箍缩负载动能或X射线辐射能的高效率能量转换,能量较为充足,驱动器造价相对低廉,并有望实现驱动器重频运行,将为驱动ICF以及惯性聚变能(IFE)提供可用的能量源。20世纪末,在美国圣地亚(Sandia)国家实验室20MA的Z装置上,采用双层丝阵,产生了峰值功率280TW、总能1.8MJ的X射线辐射脉冲,获得了实验室等离子体中最强的X射线辐射源,电能到X

15、射线的转换效率高达15%。在Z箍缩驱动ICF研究方面,Sandia实验室采用动态黑腔辐射间接驱动靶丸内爆,在Z装置上获得了超过210eV的黑腔辐射场,驱动两层气笊靶丸内爆,产生了3x10个聚变中子。2010年,Sandia实验室发展了直接驱动的磁化套筒惯性聚变(MagLIF)构型,并在2014年的Z装置集成实验中,利用Be套筒内爆压缩经过预热和磁化的笈质燃料,获得了2x1012个聚变中子。中国工程物理研究院己形成了脉冲功率驱动器、Z箍缩物理理论与数值模拟、实验与诊断、负载制备、制靶技术等Z箍缩方面的专业研究队伍,并深入开展了理论和物理实验研究、快Z箍缩内爆研究、辐射特性研究。已成功建成810M

16、A的聚龙一号装置,为进一步开展内爆物理及Z箍缩驱动惯性约束聚变基础问题的研究提供了重要的实验平台。Z箍缩X射线辐射源以及Z箍缩驱动惯性约束聚变,涵盖了磁流体力学、辐射输运、原子物理、等离子体微观不稳定性、强脉冲磁场下的输运机制等多物理过程和复杂物理效应,对这样一个复杂的多尺度、多物理过程,目前的实验平台还无法对聚变点火进行直接的实验验证,数值模拟是研究Z箍缩驱动ICF物理问题的重要手段。自2000年以来,北京应用物理与计算数学研究所建立了专门的Z箍缩理论和数值模拟研究团队,围绕Z箍缩辐射源物理和驱动ICF技术路线开展了大量研究。研制和发展了一维、二维辐射磁流体力学(MHD)程序,研究了驱动器与负载耦合、丝消融、先驱等离子体形成、主体等离子体内爆加速和滞止辐射过程,分析了辐射定标率、磁瑞利-泰勒(MRT)不稳定性和角向不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 自然科学论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!