重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx

上传人:王** 文档编号:1175387 上传时间:2024-04-12 格式:DOCX 页数:24 大小:108.73KB
下载 相关 举报
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第1页
第1页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第2页
第2页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第3页
第3页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第4页
第4页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第5页
第5页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第6页
第6页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第7页
第7页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第8页
第8页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第9页
第9页 / 共24页
重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx_第10页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx》由会员分享,可在线阅读,更多相关《重难点2-2抽象函数及其应用(8题型+满分技巧+限时检测)(解析版).docx(24页珍藏版)》请在优知文库上搜索。

1、重难点22抽象函数及其应用8大:型抽象函数指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫蝴象困数问题。抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。题型1抽象函数的定义域问题o、题型5抽象函数的单调性问题题型2抽象函数的求值问题e/1题型6抽象函数的奇偶性问题抽象函数及其应用题型3抽象函数的解析式问题一/J=题型7抽象函数的周期性问题题型4抽象函数的值域问题,题型8抽象函数的对称性问题【题型1抽象函数的定义域问题】满分技巧求抽象函数的

2、定义域已知/0)的定义域,求f(g(%)的定义域:若/(%)的定义域为。,团,则/(g(%)中Qg(%)bl解得X的取值范围即为f(g()的定义域;已知/(g()的定义域,求/(%)的定义域:若/(g()的定义域为&可,则由Q*匕确定g(%)的范围,即为/()的定义域;已知f(g()的定义域,求/(九(%)的定义域:可先由f(g(%)定义域求得f(%)的定义域,再由/()的定义域求得f(M%)的定义域;运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集.注意:求抽象函数的定义域,要明确定义域指的是X的取值范围,同一个/下括号内的范围是一样

3、的.【例1】(2023江苏徐州高三沛县湖西中学学业考试)已知函数y=/(;x+l卜勺定义域是2,4,则函数g(3l的定义域为()A.(2,3)B,(2,3C.(23)U(3,6D.(2,3)L(3,4【答案】A【解析】因为函数了=/(?+1)的定义域是2,4,所以2x4,所以2gx+l3,所以函数/(4)的定义域为2,3,所以要使函数g (%)2x3x-20,解得2vxv3,x-2l所以函数g(x)=帚、的定义域为(2,3),故选:A.【变式M(2023江苏镇江扬中市第二高级中学校考模拟预测)若函数y=(2x)的定义域为-2,4,则/(M的定义域为()A.212B.2,4C.4,4D.一8,8

4、【答案】C【解析】因为函数y=f(2x)的定义域为-2,4,则-2x4,可得-42xK8,所以,函数y=()的定义域为T8,对于函数y=f(M-(r),则有:,解得TKX4,I-4S-XSo因此,函数y()r()的定义域为1)的定义域是.【答案】-2【解析】依题意,函数y=()的定义域是-2,3,所以对于函数y=(2x-l)来说,-22x-l3,-l2x4,-l(X23二20,解得;交,即,所以函数F(X)=/(2r-3)+7的定义域为(2,3J.【变式1-4(2023黑龙江哈尔滨高三哈尔滨市第三十二中学校校考阶段练习)已知函数/&+D的定义域是1-2,2,则函数/的定义域是.【答案】1,3【

5、解析】因为函数+D的定义域为-2,2,所以-2x2,则-lx+l3,所以函数/O)的定义域为T,3.【题型2抽象函数的求值问题】满分技巧以抽象函数为载体的求值问题的常见形式,是给出函数满足的特殊条件,指定求出某处的函数值或某抽象代数式的值。常用赋值法来解决,要从以下方面考虑:令X=0,1,2等特殊值求抽象函数的函数值。【例2】(2024.山西晋城统考一模)已知定义在(0,+8)上的函数/满足也,y(O,),U+y)=+f/(X)0,且f(l)(2)=5,贝()/=()x+yxy35A.IB.2C.-D.-22【答案】B13【解析】令=尸1,得/(2)=2/+-2,即/一2川)=一因/(2)=5

6、,联立解得:/(D=2pg(l)=-,又f(x)0,所以/(D=2.故选:B.【变式2-1】(2023陕西高三校联考阶段练习)已知函数/()的定义域为R,/(+y)=()+y),且/(1)=1fJJO/(2023)=()A.0B,2022C.2023D.2024【答案】C【解析】令1,解得f(+l)=f()+l,逐项带入/(2023)=f(2022)+l=f(2021)+2=f(2020)+3=(1)2022=2023,故选:C.【变式22】(2023.贵州遵义.高三校考阶段练习)已知函数/()满足/(+y)=)+(y)+2孙-1,则/(4)-4/(1)=()A.9B.10C.11D.12【答

7、案】A【解析】令=y=,得f(2)=2()+;令x=l,y=2,得/(3)=/+f(2)+3;令X=I,y=3得4)=1)+/+5.将以上三式相加得/(4)=44l)+9,gp(4)-4(l)=9,故选:A.【变式23】(2023.全国高三专题练习)设函数“力的定义域是(O,S),且对任意正实数工,y,都有3)=f(x)+f(y)恒成立,已知/(2)=1,则卜.【答案】7【解析】令y=2,得f(2x)=f(x)+f=(x)+l,所以7(2)=f(l)+l=l,解得/(1)=。,/(l)=(f+l=0,解得/(S=T【变式2-4】(2023湖北高三襄阳五中校联考期中)对于任意的实数工、Y,函数/

8、()满足关系式+y)=()+(2y),贝!J(2)=.【答案】0【解析】依题意,取x=y,有/(2幻=/(巧+/(2幻,则/(f)=0恒成立,取X=&,则2)=0.【题型3抽象函数的解析式问题】换元法:用中间变量表示原自变量X的代数式,从而求出f();凑合法:在已知/(gQ)=()的条件下,把Zi(X)并凑成以g()表示的代数式,再利用代换即可求/G);待定系数法:已知函数类型,设定函数关系式,再由已知条件,求出出关系式中的未知系数;利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式;赋值法:给自变量取特殊值,从而发现规律,求出f(%)的表达式;方程组法:一般等号左边有两个抽象函数(如/

9、(%),/(-%),将左边的两个抽象函数看成两个变量,变换变量构造一个方程,与原方程组成一个方程组,利用消元法求/(%)的解析式.【例3】(2023耘耘疝三玉耘季Sk)写出满京/(x-y)=(x)+(y)-2的函数的解析一式.【答案】/()=【解析】f(x-y)=(x)+(y)-2y中,令x=y=O,得/(O)=O;令y=x彳导f(x-H=(x)+(x)-2,K()+()=2,贝J(x)=2【变式31】(2024.海南海口.高一海南中学校考期末)已知函数/(x)的定义域为R,且“+y)+(-y)=2()(y)f/(0)=1,请写出满足条件的一个/(X)=(答案不唯一).【答案】1,COSX(答

10、案不唯一)【解析】令=o,贝U(y)+(-y)=2(o)(y),又A。)=1,所以力+-y)=2y),即f(-y)=(y),所以函数为偶函数,不妨取偶函数/(X)=I,则/(x+y)+x7)=l+l=2xlxl=2x)(y),也可取F(X)=COSX,贝JcosCr+y)+cos(x-y)=2cosxcosy,满足题意.故答案为:1,8SX(答案不唯一)【变式3-2(2023全国高三专题练习)定义在R上的函数/U)满足/(0)=0,并且对任意实数i,.V都有/(-y)=f()-y(2x-y+2),求/()的解析式.【答案】/(x)=+2x【解析】对任意实数X,j,/(x-y)=(x)-j(2x

11、-y2),令Y=X,得/(0)=(x)r(2xr+2),即f(0)=(-2),又/(0)=0,所以f(x)=Mx+2)=f+2x【变式3-3(2023江苏高一课时练习)设/(x)是R上的函数,/(0)=lf并且对于任意的实数X,)都有f(+y)=(y)+Mr+2y+),求/()【答案】/(x)=x2+xl【解析】由已知条件得/(0)=1,又/(+y)=f(y)+(x+2y+l),设y=T,则/(XT)=/(r)+x(+l),所以1=/(-)-2+X即F(T)=2-+/./(x)=x2+x+.lB(+y)=2+2xy+j2+x+y+l,ff(y)+x(x+2y+)=x2+2x)+x+y2+y+=

12、f(x+y)t符合题设要求,故/(x)=f+x+L【题型4抽象函数的值域问题】【例4】(2024.全国高三专题练习)若函数y=(x)的值域是T3,则函数N(X)=3-2(x+l)的值域为一.【答案】卜3,5【解析】因为函数y=)的值域是T3,所以函数y=(+D的值域为,3,则尸-2(x+l)的值域为-6,2,所以函数g*)=3-2(x+l)的值域为-3,5.【变式4-112022.上海普陀高三曹杨二中校考阶段练习旧知定义在R上的函数/S)满足Q+l)=(x),若函数收)=(x)在区间1,2上的值域为-1,3,则且。)在区间【-3,5上的值域是.【答案】工刀【解析】因为/G)是R上周期为1的函数

13、,(x+l)=(x+l)-(x+l)=(x)-x-l=.g(x)-l,故对任意的整数&,当+l次+2时,x-k三,2而g(x)=g(l)-l=g(元-2)-2=g(x-k)-k.lg(x-Q-l,3,.g(x)e-l-Z,3-k,即xe%+l/+2,g(x)e-l4,3,故当X3,-2,g(x)e3,7,当x2,l,g(x)e2,6,当x,g(x)el,5,当xe,l,g(x)e,4,当xwl,2,g(x)dT,3,当xw2,3,g(x同-2,2,当工3,4送(力-3,当x4,5,g(x)e-4,.则g在-3,5的值域是g(x)-4,7【变式4-2(2022.江苏扬州高三统考阶段练习)已知g(x)=(2x-1)+1,且g(x)的定义域为(1,4,值域为13,+,设函数/(X)的定义域为A、值域为B,则AB=()A.0B.4,7C.2,7D.2,|【答案】C【解析】因为析X)=F(2x-l)+l,且g(x)的定义域为(1,4,值域为3,+8),则/(2x7)的定义域为(1,4,值域为2,+e),由l4得Iv2x77,所以/(X)的定义域为(1,7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!