模式作业-Parzen窗估计及matlab源程序.docx

上传人:王** 文档编号:1089697 上传时间:2024-03-25 格式:DOCX 页数:8 大小:29.14KB
下载 相关 举报
模式作业-Parzen窗估计及matlab源程序.docx_第1页
第1页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第2页
第2页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第3页
第3页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第4页
第4页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第5页
第5页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第6页
第6页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第7页
第7页 / 共8页
模式作业-Parzen窗估计及matlab源程序.docx_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

《模式作业-Parzen窗估计及matlab源程序.docx》由会员分享,可在线阅读,更多相关《模式作业-Parzen窗估计及matlab源程序.docx(8页珍藏版)》请在优知文库上搜索。

1、计算题3.6三类训练样本为:-1,-1,2:O,0,3:1,1试用多类感知器算法求解判别函数。解:采用多类情况3的方式分类,将训练样本写成增广向量形式,有X1=-l,-1,1,X2=0,0,1,X3=L1,1任取初始权向量为:W1(I)=W2(I)=W3(I)=IO,O,OJr取校正增量C=1。迭代过程如下:第一次迭代,k=l,以X=-l,-1,1厂作为训练样本,计算得d,(l)=W1r(l)X1=Od2(l)=W2(l)X1=0CMD=Wjx=oX1el,但d(l)d2且d(l)d3不成立,故修改3个劝向量,即Wi(2)=Wi(1)+Xi=-1,-1,lrW2(2)=W2(1)-X1=1,1

2、,-lrW3(2)=W3(1)-X1=1,1,-1第二次迭代,k=2,以X2=O,0,1厂作为训练样本,计算得dQ=W2)X2=ld2(2)=W(2)X2=-ld3=(2擀2=1X2t2,但d2Q)dQ)且d2Q)d3Q)不成立,故修改3个权向量,即W,(3)=Wi(2)-X2=-1,-1,O7W2(3)=W2(2)+X2=1,1,0W3(3)=W3(2)-X2=1,1,-27第三次迭代,k=3,以X3=,1,作为训练样本,计算得d1(3)=W(3)X3=-2d2(3)=W2r(3)X3=2d3(3)=W(3)X3=OX3d3成立,故3个权向量不变,即W1(5)=W1(4)=-1,-1,O7W

3、2(5)=W2(4)=0,0,-1W3(5)=W3(4)=2,2,-l第五次迭代,k=5,以X2=O,0,1作为训练样本,计算得d1(5)=W1(5)X2=0d2(5)=W2t(5)X2=-1d3(5)=W37(5)X2=-lX2e2f且d2(5)d(5)和d2(5)%(5)不成立,故修改3个权向量,即有W1(6)=W1(5)-X2=-1,-1,-1W2(6)=W2(5)+X2=0,O,0rW3(6)=W3(5)-X2=2,2,-2第六次迭代,k=6,以X3=U,1,作为训练样本,计算得d1(6)=W(6)X3=-3d2(6)=W2t(6)X3=0d6)=W(6)X3=2X33,且d3(6)%

4、(6)和d3(6)d2(6)成立,说明已正确分类,权向量不变,有W,(7)=W1(6),W2(7)=W2(6),W3(7)=W3(6)第七次迭代,k=7,以X=-1,-1,1J作为训练样本,计算得d1(7)=W(7)X1=ld2(7)=W2(7)X1=0d3=W3p)X尸6X1%(7)成立,说明已正确分类,权向量不变,有W(8)=W,W2(8)=W2(7),W3(8)=W3(7)第八次迭代,k=8,以X2=O,0,1作为训练样本,计算得%=WjXz=Jd?二W?X?=。叫=/X?=-2X202,且d2(8)d和d2(8)d3(8)成立,说明已正确分类,权向量不变在第六、七、八次迭代中,对所有三

5、个样本都已经正确分类,故权向量的解为W1=W1(6)=W1(7)=W1(8)=-1,-1,-1W2=W2(6)=W2(7)=W2(8)=O,O,0W3=W3(6)=W3(7)=W3(8)=12,2,-2r由此得三个判别函数分别为dl(X)=-x1-x2-ld2(X)=Od3(X)=2x1+2x2-24.2假设在某个地区的疾病普查中,正常系统(Gl)和异常细胞(2)的先验概率分别为P()=0.9,P1刃2)=OJo现有一待识别细胞,起观察值为X,从概率密度分布曲线上查得P(XlGl)=O.2,P(Xl&2)=0.4,试对该细胞利用最小错误率贝叶斯决策规那么进行分类。解:利用先验概率和类概率密度计

6、算。p(X)P(M)=0.2*0.9=0.18p(X2)P(p(X02)P(g2),所以X是正常细胞。程序施4.12给出ParZen窗估计的程序框图,并编写程序。parzen窗设计、parzen窗设计原理一、根本原理ParZen窗估计法是一种具有坚实理论根底和优秀性能的非参数函数估计方法,它能够较好地描述多维数据的分布状态。其根本思想就是利用一定范围内各点密度的平均值对总体密度函数进行估计。一般而言,设X为d维空间中任意一点,AN是所选择的样本总数,为了对X处的分布概率密度Pva)进行估计,以X为中心作一个边长为九的超立方体Vn,那么其体积为VN=忒,为计算落入VN中的样本数构造一个函数使得O

7、(U)=C当J=I2,40,其他并使夕()满足条件夕0,且,()点=1,那么落入体积V中的样本数为N(x-卢,那么此处概率密度的估计值是:hN)1N1fV-v.APM)=甘,=,VNV式是ParZen窗估计法的根本公式,夕()称为窗函数,或核函数、势函数。窗函数的作用是内插,每一样本对估计所起的作用取决于它到X的距离。在ParZen窗估计法的根本公式中,窗宽/Zv是一个非常重要的参数。当样本数N有限时,z,对估计的效果有着较大的影响。二、窗函数的选取一般可以选择的窗函数有方窗、正态窗等。基于以下原因,本文选择正态窗作为核函数:(1)正态函数的平滑性将使得估计函数变化平滑;(2)如果选择完全对称

8、的正态函数,估计函数中只有一个参量变化;(3)便于利用书中例题4.5校核程序。因此,选择正态核函数的情形下,正态窗函数为()=xP4即)=exph)概率密度的估计式为az2z1&11XV.(X)=;-exp-(5)NhNJ国2hN)_二、程序说明本程序根据课本P120例4.5编写(有改动)(一)、首先生成Parzen窗估计函数文件1、源程序functionpNx=parzen(N,h1,x)%ParzenhN=hlsqrt(N);PNX=ZeroS(1,30000);foru=l:30000fori=l:NpNx(u)=pNx(u)+exp(x(u)-x(i)hN).2-2)sqrt(2*pi

9、)hN;endpNx(u)=pNx(u)N;end2、说明(DZn=J其中2为可调节的参数(2)程序通过循环累加实现公式PY(X)=R方与壶ep即n(X)=y=exp-徉J】h而幺而2IJ(3)其中零序列的长度可以任意设置,但后面的循环次数和主程序里随机函数randn的参数必须保持一致。由于mdn设置参数时不能出现无穷大inf,所以没有取无穷大值,而取了70000o(二)主程序1、源程序clc;clear;x=randn(1,70000);px=normpdf(x,0,1);%Parzen窗h1=0.25时,N不同的估计subplot(2,3,l);plot(x,px,.);title(,原始

10、一维正态分布)pNx=parzen(1,0.25,x);SUbPlot(2,3,2);plot(x,pNx,.);title(Parzen窗法估计单一正态分布,)Xlabelfh1=0.25,N=)pNx=parzen(l6,0.25,x);subplot(2,3,3);plot(x,pNx,.);title(,Parzen窗法估计单一正态分布)xlabel(,h1=0.25,N=16,)pNx=parzen(256,0.25,x);SUbPIot(2,3,4);plot(x,pNx/.);title(Parzen窗法估计单一正态分布)xlabel(,hl=0.25,N=256)pNx=par

11、zen(4096,0.25,x);SUbPIot(2,3,5);plot(x,Nx,.);title(,Parzen窗法估计单一正态分布,)xlabel(,hl=0.25,N=2000)PNX=ParZen(65536,0.25,x);subplot(2,3,6);plot(x,pNx,.);title(Parzen窗法估计单一正态分布,)xlabel(,h1=0.25,N=65536)%Parzen窗h1=1时,N不同的估计figure(2);subplot(2,3J);plot(x,px,.);litle(,原始一维正态分布)pNx=parzen(l,l,x);SUbPlot(2,3,2)

12、;pIot(x,pNx,.);title(,Parzen窗法估计单一正态分布)Xlabelfhl=I,N=)pNx=parzen(l6,l,x);SUbPlot(2,3,3);plot(x,pNx,.);title(Parzen窗法估计单一正态分布,)xlabel(hl=l,N=16,)PNX=ParZen(256,1,x);SUbPlOt(2,3,4);plot(x,pNx,.);title(,Parzen窗法估计单一正态分布,)xlabel(h1=1,N=256,)pNx=parzen(4096,1,x);SUbPlOt(2,3,5);plot(x,pNx,.);出IeeParZen窗法估

13、计单一正态分布)xlabel(hl=l,N=4096)pNx=parzen(65536,1,x);subplot(2,3,6);plot(x,pNx,1.,);title(Parzen窗法估计单一正态分布?xlabel(,hl=l,N=65536,)%Parzen窗h1=4时,N不同的估计figure(3);subplot(2,3,I);plot(x,px,.);IiHec原始一维正态分布)PNX=ParZen(1,4,x);SUbPIot(2,3,2);plot(x,pNxA,);title(Parzen窗法估计单一正态分布,)xlabel(,h1=4,N=)pNx=parzen(l6,4,x);SUbPIOt(2,3,3);plot(x,pNx,);title(,Parzen窗法估计单一正态分布,)xlabel(,h1=4,N=16,)PNX=ParZen(256,4,x);SUbPIot(2,3,4);plot(x,pNx/.);title(Parzen窗法估计单一正态

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 毕业论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!