《旋转(全)知识点习题及答案.docx》由会员分享,可在线阅读,更多相关《旋转(全)知识点习题及答案.docx(10页珍藏版)》请在优知文库上搜索。
1、旋转23.1图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点。旋转一个角度的图形变换叫做旋转.点。叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P,那么这两个点叫做对应点.注意:旋转是围绕一点旋转定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.旋转中心是点而不是线,旋转必须指出旋转方向.旋转的范围是平面内的旋转,否那么有可能旋转成立体图形,因而要注意此点。2.旋转的性质(1)旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.(2)旋转三要素:旋转中心;旋转方向;旋转
2、角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2中心对称图形1 .中心对称(1)中心对称的定义把一个图形绕着某个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2 .中心对称图形(1)
3、定义把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3 .关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点。的对称点是P(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形
4、.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4 .坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)=P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30,45,60,90,180.5 3.3课题学习图案设计1 .利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2 .利用平移设计图案确定一个根本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.
5、3 .作图一旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4 .利用旋转设计图案由一个根本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(旋转中心:旋转方向;旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5 .
6、几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持
7、不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.旋转根底练习一一、选择题1 .在26个英文大写字母中,通过旋转180。后能与原字母重合的有()A.6个B.7个C.8个D.9个2 .从5点15分到5点20分,分针旋转的度数为()A.20oB.26oC.30oD.363 .如图L在RtAABC中,ZACB=90o,ZA=40o,以直角顶点C为旋转中心,将AABC旋转到aABC的位置,其中A,、B,分别是A、B的对应点,且点B在斜边ABUt,直角边CA,交AB于D,那么旋转角等于()A.70oB.80oC.60oD.50(图1)(图2)(图3)二、填空题.1 .在平面内,将一个图形绕
8、一个定点沿着某个方向转动一个角度,这样的图形运动称为,这个定点称为,转动的角为.2 .如图2,AABC与AADE都是等腰直角三角形,NC和NAED都是直角,点E在AB上,如果AABC经旋转后能与AADE重合,那么旋转中心是点;旋转的度数是.3 .如图3,ZABC为等边三角形,D为AABC内一点,ABD经过旋转后到达AACP的位置,那么,(1)旋转中心是;(2)旋转角度是;13)ZADP是三角形.三、解答题.1.阅读下面材料:如图4,把AABC沿直线BC平行移动线段BC的长度,可以变到AECD的位置.如图5,以BC为轴把AABC翻折180,可以变到ADBC的位置.(图4)(图5)(图6)(图7)
9、如图6,以A点为中心,把AABC旋转90。,可以变到AAED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.答复以下问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=-AB.2(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪种方法,使AABE移到AADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?ABCAB答案:一、1.B2.C3.B二、
10、1.旋转旋转中心旋转角2,A453.点A60等边三、1.(1)通过旋转,即以点A为旋转中心,将AABE逆时针旋转90。.(2)BE=DF,BEDF2.翻滚一次滚120。翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转根底练习二一、选择题1. AABC绕着A点旋转后得到AABC,假设NBAC=I30。,ZBAC=80o,那么旋转角等于()A.50oB.210oC.50。或210。D.1302 .在图形旋转中,以下说法错误的选项是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3 .如图,下
11、面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B.C.D.别是底边,图中,其中二、填空题1 .在作旋转图形中,各对应点与旋转中心的距离.2 .如图,ZiABC和AADE均是顶角为42。的等腰三角形,BC、DE分的AABD绕A旋转42。后得到的图形是,它们之间的关系是BDCE(填或J).3 .如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、ADFZEAF=45o,在保持NEAF=45。的前提下,当点E、时,BE+DF与EF的关系是.三、解答题1 .如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次
12、旋转角度都是90。,这四个局部之间有何关系?2 .如图,以aABC的三顶点为圆心,半径为1,作两两不相交的扇形,个扇形面积之和是多少?延长线 延长线于 不重合请3 .如图,正方形ABCD的对角线交于。点,假设点E在AC的上,AGEB,交EB的延长线于点G,AG的延长线交DB的点F,那么aOAF与AOBE重合吗?如果重合给予证明,如果说明理由?答案:一、1.C2.A3.D二、1.相等2.ACE图形全等=3.相等三、1.这四个局部是全等图形2 .VZA+ZB+ZC=180o,绕AB、AC的中点旋转180。,可以得到一个半圆,面积之和=L.23 .重合:证明:VEGAF;Z2+Z3=90o,/Z3+
13、Zl+90o=180oVZl+Z3=90oZ1=Z2同理NE=NF,四边形ABCD是正方形,AAB=BCABFBCE,BF=CE,OE=OF,VOA=OBOBE绕O点旋转90。便可和AOAF重合.旋转根底练习三一、选择题1.如图,摆放有五杂梅花,以下说法错误的选项是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转902 .同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图是看到的万花筒的一个图案,图中所有三角形均是
14、等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为中心()A.顺时针旋转60。得到的B.顺时针旋转120。得到的C.逆时针旋转60。得到的D.逆时针旋转120。得到的D.,,次得到的,每次旋转3 .下面的图形中,绕着一个点旋转120。后,能与原来的位置重合的是()二、填空题1 .如图,五角星也可以看作是一个三角形绕中心点旋转.的角度是.换.向连续旋转2 .图形之间的变换关系包括平移、轴对称以及它们的组合变3 .如图,过圆心O和图上一点A连一条曲线,将OA绕。点按同一方三次,每次旋转90。,把圆分成四局部,这四局部面积三、解答题.1 .请你利用线段、三角形、菱形、正方形、圆作为“根本图案
15、”绘制一幅以校运动会为主题的徽标.的方法,将 你来试一 位置,否那2 .如图,是某设计师设计的方桌布图案的一局部,请你运用旋转该图案绕原点O顺时针依次旋转90。、180。、270,并画出图形,试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了么你将得不到理想的效果,并且还要扣分的噢!针旋转后,3 .如图,AABC的直角三角形,Be是斜边,将AABP绕点A逆时能与aACP,重合,如果AP=3,求PP的长.答案:一、1.D2.D3.C二、1.4722.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2 .略3 .VAABP绕点A逆时针旋转后,能与aACP嚏合,AP,=AP,ZCAP,=ZBAP,:,ZPAP,=ZPAC+ZCAPr=ZPAC+ZBAP=ZBAC=90o,PAP为等腰